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Non-linear gravity wave interactions 

By D. J. BENNEY 
Massachusetts Institute of Technology, Cambridge, Mass. 

(Received 16 .Time 1962) 

In  earlier papers Phillips (1960) and Longuet-Higgins (1962) have investi- 
gated phase velocity effects and possible resonances associated with the inter- 
actions of gravity waves. In  this note the problem is discussed from a different 
viewpoint which demonstrates more clearly the energy-sharing mechanism 
involved. Equations governing the time dependence of the resonant modes are 
obtained, rather than the initial growth rate as has been found previously. 

1. Introduction 

solution of 

subject to the kinematic and pressure conditions 

Consider the classical problem of wave propagation on deep water, namely the 

A$ = 0, (1 .1)  

Tt+T,#z+T2#2-4g = 0,  at Y = v(x,z,t), (1.3) 

4 t + g y + 4 p 4 1 2 =  0, at y = T ( X , Z , t ) ,  (1.3) 

1041 + O ,  as y-t-co. (1.4) 
Here y = 0 is taken as the undisturbed and y = ~ ( x ,  z, t )  as the disturbed free 
surface, g denotes gravity and q = V$. 

The standard procedure of solving this problem is first to replace the boundary 
conditions (1.2) and (1.3), which are applied at  the unknown surface y = 7, by 
equivalent ones at the known undisturbed surface y = 0. Quantities up to and 
including the third-order terms only will be retained in the subsequent analysis. 
It is found that equations (1.2) and (1.3) are to be replaced by 

Tt - 4?/ + (T4s)z + (T42)2+ 4(r24z&c + h 2 4 2 J 2  = 0,  at Y = 0,  (1.5) 

gT+4~++#,t+~jVqn12+gT2#,, t+grIV41~ = 0, at Y = 0. (1.6) 

Elimination of q then yields a, boundary condition on 4 alone, namely, 

4tt + g4g = { - 4 I v4 I + g-% 4 g t  + Bs-'(+t I v4 I 2)1/ - r24t 4% - 4m4/,t m t  

+ { - 4, 4t - 44, 104 I + g - v z  4t 4ut  + 4g-% 4z,)z 

+ { - $4 4t - 442 lV4I2 + g - v z  $4 4,t + +g-'4;#ZJ29 at Y = 0. (1 .7 )  

To discuss the interactions of a given set of primary waves we write 

# = A , , ( t )  + x (A,(t)  eikz.f+A-,(t) e-iklar ) elkl lg  
1 

+ x (A,,(t)  ei@lfkm)er +Ap,, -m(t)  e--i@z+km).r) elklfknll 

+ c 
1, m 

1 ,  m,n 

( A ,  m, ,(t) ei@Z+km+kn).r + A-,, -m, -%(t) e-i@l+kn+kn)-r) eIkZ+krn+k,lU, (1.8) 
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where k, and r denote the wave-number and radius vectors in the (2 ,  2)-plane. The 
functions A_,, A-,, -m, ,,. are the complex conjugates of A,, Az,m, ... respectively, and 
the number of subscripts is the order of the wave concerned. 

The form assumed for $ in equation (1.8) satisfies equations (1.1) and (1.4) 
and it remains to satisfy the boundary condition (1.7). 

If the non-linear terms in equation (1.7) are neglected we have the familiar 

~ + u : A ,  = 0 
d2A, 
at2 

( I  = 1,2 ,  ...), 
equations, 

where w: = g lkzI, corresponding to the classical linear theory. Here each mode 
propagates with velocity fq, where c1 = (g/Ik,l)*, independent of the other 
modes. Equation (1.9) corresponds to a system of uncoupled linear oscillators, 
the general solution being 

where a, and b, are arbitrary complex constants describing the amplitudes of the 
two antiparallel waves. Later as we shall see the inclusion of the non-linear terms 
of equation (1.7) necessitates taking a, and b, as slowly varying functions of time. 

Using equations (1.7) and (1.8), the differential equations for the second-order 
motion are found to be 

A, = a,e-iwit+b,ei"zt, (1.10) 

(1.11) 

From equation (1.12) we have, 

where only the oscillations forced by the primary modes have been included. 
To find the non-linear oscillator equations governing the primary modes we 

first evaluate the various coefficients on the right-hand side of equation (1.7), 
using the assumed form for q5. 

For eikl.r we have 

I k ~ l d A ~ d A o ~ o  lk112(ff)2di;l ' I k ~ 1 3 A l A - , ~ ~ ]  
g dt dt 2g2 g at 
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-+(lk,[  +“lkml,$$“l “;;--_‘+~(lk,(+2(k,,l)A,A_,~

+$lk,l lkn,l +k,.k,HIkrl  +%nl~A,A_,~

+;(lkJ lkml -kt.W  (l&l +21kmb%Amd+)

d4 m+(k,.k,)A,~d~-(kr.kti)A-m~+k~4krk,)dtdAWZ  A , - ,

$$%,nc 7““’ (lkll  + 2 Ikml>  A”$+
dA dA-

+k,-&-l-k,)

+2((k,12 /k,j2+  (k,.km)2AzA,A-,- @$+kl;+2;km;)A,,%d+

+~(lk~l+“lk~l)A-~~~~~]. (1.14)

The coefficient of ei@l+%n+‘@-’ is

;((kl.(k,+k,)-I&/  )k,+k,l)A,A,,,+(k,.(k,+k,)-Ik,(  \k,+kt\)AmA,,

+(k,.(k,+k,)-  /km/ lk,+k,l)d,A,,+~(lk~l  +]km+k+$$@+

~4&4nt
+$,[  + lk.+ktl)d+d++;  (lknl + k+kl)  dt dt

-+I + lkml+ Ik,,~)244nA,+~(/k,/  + l&n\ + I&$
x (1% lknl -knWd~4A

++I + lkml+ lknl)  (IhI lkll -kWd+-4A,

++~I + l&l + (k,lH(k,( lknl  -k,.hn)~4Am)

1
dA d4, z dA, m

+(k,+k,+k,).  k~A,~+kmA,~+k,A,y& i

i
d4 dA d4

+ (k2+km+k,). (k,+k,)A,,dt+(k,+k,)A,,~~+(k,+k,)A,,,, I

(lkd+lkml $- lkd (k,+k +k )--. .-__
9

112 7%

i
k,A dA,dA, dA,  dA

’ ’ dt dt
--+kmAm$+d++knAn-z~

I

+(k,+k,,+k,).{(lk,I  lknl  -KrAJk,+(Ikl  lkd -kn.kz)km

+ (l&l lkml  -W%&&W,A,. (1.15)
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The coefficient of ei(zkl+km)-r is 

2. Case of no apparent resonances 
In  this section we consider the case in which 

wz+w,+w,+wp and k,+k,+k,-tk, 

(with the same sign sequence in each) are not both zero or close to zero (in the 
sense that they differ from zero by terms of the second order). This means that 
the third-order non-linear interactions do not generate a natural mode of the 
system. 

The oscillator equations governing the time dependence of the primary modes 
are 

d 2 + W ; A l  = F, (1 = 1,2, ...), (2.1) 
at2 

where 4 is a cubic function of the A, and their derivatives; namely the expression 
(1.14). Such a system can be solved by the asymptotic methods of non-linear 
mechanics; e.g. Bogoliuboff & Mitropolski (1958). We write 

A, = a,e-iw~t+f,ei*lt, (2.3) 

where a, and b, are now considered to be slowly varying functions of time. The 
small parameter is the maximum slope of the disturbed surface. One then takes 

(2.3) = - iw, a, e-%t + iw, b, e k t ,  
dt 

with 
da, e-i6J$t + c db ei611t = 0. 
at at 

Using equation (2.1) we have 

and so, 

and 

(2.4) 

(2.5) 

(2.6) 

(2.7)  
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Equation (1.13) and its counterpart derivable from equation (1 .11)  are still 
valid for the second-order motion but the a, and b, are now considered as time 
dependent. 

From equations (2.6) and (2.7) the theory of the first approximations gives 

(2.8) 

(2.9) 

da, . 
ozXdt = za,C (azmama&+P,,b,bg) ( I =  1,2,  ....), 

n 

w,- 4 = -ib,C(y,,,a,a~+S,,b,b~) ( 1  = 1; 3, ...), 
at WL 

where each of the azm, Pzm, yzm, S,, are real functions of the wave-numbers and 
frequencies concerned. In  fact a little algebra shows that 

aZnL = Pzm = y,, = S,, = - 2  lkZl4, if I = m, (3.10) 

WZ W m  
alrn = Plm = yzrn = Szrn = lk~121km12+(k~.km)2-2~(k~.k,)(Ik~l+'Ikml)  a 

The equations (2.8) and (2.9) can be solved explicitly to give 

a, = az(0)e-iwlnzt, 

b, = b,( 0 )  eiwl t ,  

where 

(2.12) 

(2.13) 

(2.14) 

The expressions A, give the dependence of the frequencies on the amplitudes, or 
equivalently the h,/lk,l give the modifications to the wave speeds c, of the 
linear modes. If there is only one mode present and the wave is uni-directional 
(b, = 0 is a solution of equation (2.9)), then this reduces to the first term of the 
Stokes solution for a travelling wave. It is more usual to use the amplitude of the 
surface elevation rather than the velocity potential; thus corresponding to the 

4, = (A,eikz*f+A , e - ~ k z ~ ~ ) e I k ~ l ~ ,  (2.15) 
primary mode 

the surface elevation is (2.16) 
where we have 

- 

rl = B, eikl. r + B, e-ikl. r ,  

A - a - i w l t + b z e i w l t  
3 (2.17) I -  ze 

B, = a, e--iwzt + e, eiwzt. (2.18) 

It follows that - i ~ , d ,  = lkzl a,, (2.19) 

i q e ,  = lktl b,, (2.20) 

and so d, = dz(0) e-iwlhlt, (2.21) 

el = e,(O) eiwl*zt, (2.22) 

where $ A, = 3 alm&(dm(O) dE(0) + em(o) eL(o))* (2.23) 
m 
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3. Modifications due to apparent resonances 
It has been shown by Phillips (1960) and Longuet-Higgins (1962) that in the 

case of deep water no apparent resonances can occur in the second-order inter- 
actions; but they can occur in the third-order interactions. Thus a new mode not 
initially present may be excited through the non-linearity of existing modes. In 
their analysis such a newly excited mode grows like t .  While this is true of the 
initial growth it is spurious in the sense that it gives no indication as to what 
extent this mechanism is effective, the magnitude to which the new mode will 
grow and the amplitude modifications of existing modes. It is this point we now 
investigate. 

For simplicity we shall restrict ourselves to the case in which each b, = 0. Thus 
the primary modes are each uni-directional travelling waves. If this is not the 
case (for example, if one mode is a standing wave) a similar analysis applies. 

First suppose w1 + w2 + w3 = w4 and k, + k, + k, = k,, where ki + kj for i + j .  
The equations corresponding to (2.8) are now 

4 

m = l  

da, 
u1 dt = ia,( s Elm am a:) + i ~ ,  a; a: a4, 

w ~ = i a 2 (  dt m= c 1 01 2m a m a* m )  +iB,aTa:a,, 

w3- dt = za 3(z1 ,,mama:) +ieSa~a;a47 

da 4 

da, . 4 

dt am a;) + ie, a, a, a,, 

where the Om, m = 1,2,3,4, are real constants which can be evaluated (by suitable 
sign changes) from equation (1.15). The set of equations (3.1)-(3.4) is an eighth- 
order system governing the slowly varying amplitudes and phases of the four 
modes concerned. Three simple integrals can be obtained which demonstrate the 
energy -sharing mechanism involved, namely 

(3.5) "m - lum12+2 0 la,!, = w lavJO)12+- w4 la4(0)12 (m = 1,2,3). 
om 8 4  o m  0 4  

The set of four modes form a group in which the growth of one must be compen- 
sated for by the decay of another, and the effect of the non-linearity can no 
longer be interpreted as merely changing the wave speeds of the various modes. 
Three interacting waves of the group can generate the fourth from rest to become 
an order-one mode, each oscillation having a slowly varying amplitude and phase. 

We consider in more detail the case in which 2w, = w, + w3 and 2k, = k, + k,; 
the three modes forming a resonant triad. The three equations governing the 
first-order motion are now 

da 3 

w dt = ia,( m= c 1 " m , u m a ~ )  +i$,a~a,a,, (3.6) 
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and so 

(3.9) 
"1 "m w wm -/all2+- = 21al(0)12+- lam(0)12 (m = 2,3), 
$1 $nl $1 @m 

or equivalently in terms of the surface elevations 

( I k 1 (  + Ik2m) { I  kl( ( I  k,( I k3( - k, . k3) + "F I kll (I k21 + 1 k31) + 
2 

- lkll Ik31-4Ikll lkl-k3l - Ik3l Ik1-k3l)$ (3.13) 

and where k3 is derivable from $2 by interchanging the subscripts two and three. 

1L k, k2 k3 - g-% $1 - g-*,2 $2 - g-*% $3 

$ R  (1, 0) (-0.189, 0.189) (2.189, -0.189) 0.015 0.001 0.011 

a R  (1, 0 )  (0.347, 0-347) (1.653, -0.347) 1.251 0.460 0.813 
477 (1,O) (0, 0.332) (2, -0.332) 0.238 0.068 0.169 

TABLE 1 

It is evident from equation (3.10) that in ( Jd1l2, ld2I2, Id3(2)-space the modes lie 
on a straight line having direction numbers (wl $1, - w2 $,, - w3 $3) through the 
point corresponding to the initial amplitudes. There is an asymmetry in this 
situation in that modes one and two (or three) can generate mode three (or two) 
from rest; but the interactions of modes two and three will not generate mode 
one from rest. If all three modes are initially present then the energy distribution 
will vary with time. No stable equilibrium amplitudes can be expected as the 
system is conservative. In  practice the inevitable dissipation could modify this 
conclusion. 

To illustrate the extent of the energy exchange, numerical results have been 
obtained using equations (3.1 1) and (3.12), for three special cases; namely, when 
the modes one and two are inclined at  angles of p = an, in, $n. It is seen from 
table 1 that the interaction can be significant and should be observable. 
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4. Concluding remarks 
It has been shown that the principal effect of ordinary weakly non-linear 

interactions of gravity waves is a modification of the linear wave speeds of the 
individual modes dependent on all the modes present. A similar result was 
obtained by Longuet-Higgins & Phillips (1962) by allowing secular terms to arise 
in the perturbation scheme and interpreting them as changes in wave speeds; 
however, there appears to be some algebraic differences between their results 
and the present work. 

If resonant conditions are satisfied, or indeed close to being satisfied, there is a 
direct but slow exchange of energy between the order-one modes. New primary 
waves can be generated by the non-linear coupling of the equations, and the 
existing energy distribution modified. In  such circumstances the free surface at  
a particular point must be expected to have a slowly changing pattern. Higher- 
order resonances are of course possible; but the essential ideas would be similar 
to those considered here. 

It should be remarked that the concept of resonant interactions has been 
suggested as a possible explanation of the transition phenomenon (Raetz 1959). 
In  this case the mean flow is an energy source for the various modes; but it appears 
that this situation is governed by a far more dramatic mechanism (Benney & 
Greenspan 1962). Nevertheless, in many physical systems the transfer of energy 
associated with apparent resonant interactions may be an important factor. 

This work was supported in part by the Office of Naval Research. 
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